4D CT image reconstruction with diffeomorphic motion model

نویسندگان

  • Jacob Hinkle
  • Martin Szegedi
  • Brian Wang
  • Bill Salter
  • Sarang C. Joshi
چکیده

Four-dimensional (4D) respiratory correlated computed tomography (RCCT) has been widely used for studying organ motion. Most current RCCT imaging algorithms use binning techniques that are susceptible to artifacts and challenge the quantitative analysis of organ motion. In this paper, we develop an algorithm for analyzing organ motion which uses the raw, time-stamped imaging data to reconstruct images while simultaneously estimating deformation in the subject's anatomy. This results in reduction of artifacts and facilitates a reduction in dose to the patient during scanning while providing equivalent or better image quality as compared to RCCT. The framework also incorporates fundamental physical properties of organ motion, such as the conservation of local tissue volume. We demonstrate that this approach is accurate and robust against noise and irregular breathing patterns. We present results for a simulated cone beam CT phantom, as well as a detailed real porcine liver phantom study demonstrating accuracy and robustness of the algorithm. An example of applying this algorithm to real patient image data is also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Second International Workshop on Pulmonary Image Analysis

In this paper we propose an approach to generate a 4D statistical model of respiratory lung motion based on thoracic 4D CT data of different patients. A symmetric diffeomorphic intensity–based registration technique is used to estimate subject–specific motion models and to establish inter–subject correspondence. The statistics on the diffeomorphic transformations are computed using the Log–Eucl...

متن کامل

Coronary Motion Estimation from CTA Using Probability Atlas and Diffeomorphic Registration

In this paper, we present a method for coronary artery motion estimation from 4D cardiac CT angiogram (CTA) data sets. The proposed method potentially allows the construction of patient-specific 4D coronary motion model from pre-operative CTA which can be used for guiding totally endoscopic coronary artery bypass surgery (TECAB). The proposed approach consists of three steps: Firstly, prior to ...

متن کامل

Improving iterative 4D CBCT through the use of motion information

In Image-Guided RadioTherapy (IGRT) of lung tumors, patients undergo a 4D CT, on the basis of which their treatment is planned. It is implicitely assumed that their breathing motion will not change much throughout the treatment, and remain close to what it was during the 4D CT acquisition. During the treatment, several cone beam CT acquisitions are performed, and used to re-position the patient...

متن کامل

Registration of 4D Time-Series of Cardiac Images with Multichannel Diffeomorphic Demons

In this paper, we propose a generic framework for intersubject non-linear registration of 4D time-series images. In this framework, spatio-temporal registration is defined by mapping trajectories of physical points as opposed to spatial registration that solely aims at mapping homologous points. First, we determine the trajectories we want to register in each sequence using a motion tracking al...

متن کامل

A Diffeomorphic Framework for Surrogate-based Motion Estimation in Radiation Therapy: Concept and First Evaluation

Respiratory motion is a major obstacle in radiation therapy of thoracic and abdominal tumors. Techniques to cope with it such as gating and tracking techniques are based on the use of breathing signals that can be acquired easily and in real-time. These signals represent only surrogates of the motion of the inner organs and tumors. Consequently, methods are needed to estimate respiratory motion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image analysis

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 2012